Coordinate Algebra EOC (GSE) Quiz Answer Key

Functions - (MGSE9-12.F.LE.1) Linear And Exponential

Student Name:

Teacher Name: THUYNGA DAO

1)

x	2	4	6	8	10
у	3	5	7	9	11

table

Date:_____

Score:

The data in the table is MOST closely modeled by graph

Explanation:

B is best, since it appears to be linear, and the values in the table follow the linear pattern y = 2x + 1.

USATestprep, Inc.

2) You are going to model the population size of a species of bird that is gradually becoming extinct. Which graph is the BEST choice for doing this?

Explanation:

D is best, since it is decreasing from left to right at a slower and slower rate.

Identify the graph(s) of exponential decay.

- A) I only
- B) III and IV only
- C) II and IV only
- D) II, III, and IV only

Explanation:

The correct answer is **I only**. Exponential decay functions are of the form $f(x) = a^*b^x + c$, where x < 0, b > 0 and $b \neq 1$. Graphically as x increases without bound y decreases towards the horizontal asymptote.

4) The cost of vacation to a cabin resort for a night is \$95 for each person. Each cabin also has to pays a \$25 recreational equipment rental fee. Model the cost, C, for x for a one night stay at the resort.

- A) C(x) = 25x
- B) C(x) = 95x
- C) C(x) = 95 + 25
- D) C(x) = 95x + 25

Explanation:

C(x) = 95x + 25 is correct, since the \$25 cost is fixed, but the \$95 cost increases as x increases.

5) The cost of membership at local country club is \$125 per family member per month. Each family also has to pay \$75 in service fees. Model the cost, C, for a membership for a family with x members.

- A) C(x) = 75x
- B) C(x) = 125x
- C) C(x) = 125x + 75
- D) C(x) = 125 + 75x

Explanation:

C(x) = 125x + 75 is correct, since the \$75 cost is fixed, but the \$125 cost increases as x increases.

USATestprep, Inc.

USATestprep, Inc.

6) A new car worth \$20,000 loses 20% of its value every year. Is the value of the car represented by a linear or exponential function?

- A) linear
- B) exponential
- C) both linear and exponential
- D) neither linear or exponential

Explanation:

exponential is correct. Use the function $f(x) = c(1-r)^{t}$; $f(x) = 20000(1-.20)^{t}$ The independent variable appears as an exponents and the graph of the function is curved.

7)

Identify the graph(s) of exponential growth.

- A) I only
- B) III and IV only
- C) II and IV only
- D) II, III, and IV only

Explanation:

The correct answer is **III and IV**. Exponential growth functions are of the form $f(x) = a^*b^x + c$, where x > 0, b > 0 and $b \neq 1$. Graphically as x increases without bound so does y. They also have a horizontal asymptote.

USATestprep, Inc.

8) A membership to the local gym cost \$40 and then \$2 per visit. What is the maximum number of visits that can be made for \$90 and is it modeled by a linear function or a exponential function?

- A) 25; linear
- B) 25; exponential
- C) 45; linear
- D) 45; exponential

Explanation:

25; linear

90 = 2x + 40 50 = 2x 25 = x

9)

I.	$f(x) = 9 \bullet 5^x - 4$
II.	$g(x) = 4x^2 + 3$
III.	$h(x) = 16 \bullet 11^{-x+3}$
IV.	$m(x) = 6^{x+1} - 3$

Identify the function(s) that represent exponential growth.

- A) I only
- B) III only
- C) I and IV only
- D) I, II, and IV only

Explanation:

The correct answer is **I** and **IV**. Exponential growth functions are of the form $f(x) = a^*b^X + c$, where x > 0, b > 0 and $b \neq 1$.

10) If the number of bacteria in a colony doubles every 210 minutes and the population is currently 8,000 bacteria, what will the population be in 630 minutes and is it modeled by a linear function or a exponential function?

- A) 24,000; linear function
- B) 24,000; exponential function
- C) 64,000; linear function
- D) 64,000; exponential function

Explanation:

64,000; exponential function

Determine how many times the population will double.

 $\frac{630}{210} = 3$

Multiply the population by 2 a total of 3 times.

 $8,000 \times 2^3 = 64,000$

USATestprep, Inc.

11) If a city that currently has a population of 1000 triples in size every 8 years, what will the population be in 24 years and is the population growth modeled by a linear function or an exponential function?

- A) 10,000; linear
- B) 10,000; exponential
- C) 27,000; linear
- D) 27,000; exponential

Explanation:

27,000; exponential

24 ÷ 8 = 3

The population will triple three times.

 $1000 \times 3^3 = 27,000$

12)

I.
$$f(x) = 3 \cdot 5^{-x}$$

II. $f(x) = (\frac{1}{2})^{x}$
III. $f(x) = -7e^{x} + 8$

Identify the functions which represent exponential decay.

- I and II only A)
- B) I and III only
- I, II, and III C)
- D) II and III only

Explanation:

I and II only is correct. Exponential decay functions have the form $f(x) = ab^{x} + c$. Function I is already in this form, and function II can

be rewritten by changing $\frac{1}{2}$ to 2⁻¹, and then getting 2^{-x}.

13) If there is 360 grams of radioactive material with a half-life of 8 hours, how much of the radioactive material will be left after 32 hours and is the radioactive decay modeled by a linear function or an exponential function?

- A) 22.5 grams; linear
- B) 22.5 grams; exponential
- C) 45 grams; linear
- D) 45 grams; exponential

Explanation:

22.5 grams; exponential

The material will half 4 times.

$$360 \times (\frac{1}{2})^4 = 22.5$$

USATestprep, Inc.

14) If there is 520 grams of radioactive material with a half-life of 12 hours, how much of the radioactive material will be left after 72 hours and is the radioactive decay modeled by a linear function or an exponential function?

A) 8.125 gram; linear

B) 8.125 grams; exponential

- C) 16.25 grams; linear
- D) 16.25 grams; exponential

Explanation:

8.125 grams grams; exponential

The material will half 6 times.

 $520 \times (\frac{1}{2})^6 = 8.125$ grams

15) Hank bought a \$24,000 car when he graduated from college. If his car depreciates at a rate of 10% per year, how long will it take for the car to lose half its value?

A) 4 months

B) 5 years

C) 6 years, 7 months

D) 7 years, 4 months

Explanation: 6 years, 7 months is correct.

For a decay problem, we use the formula $A = A_0(1 - r)^t$

A = 12,000 A₀ = 24,000 r = .1 t = ? 12,000 = 24,000(1-.1)^t $\frac{1}{2} = .9^{t}$ t = $\log_{.9}(\frac{1}{2})$ t = $\frac{\ln(\frac{1}{2})}{\ln(.9)}$

t \approx 6.5788, which is about 6 years and 7 months.

16) A lifetime membership to the zoo cost \$30 and then just \$2 per visit. What is the maximum number of visits that can be made for \$50 and is it modeled by a linear function or a exponential function?

A) 10 visits; linear function

- B) 10 visits; exponential function
- C) 25 visits; linear function
- D) 25 visits; exponential function

Explanation:

10 visits, linear function

50 = 2x + 30 20 = 2x 10 = x

USATestprep, Inc.

USATestprep, Inc.

17) If the number of bacteria in a colony triples every 60 minutes and the population is currently 2,000 bacteria, what will the population be in 240 minutes and is the growth modeled by a linear function or a exponential function?

- A) 20,000; linear
- B) 20,000; exponential
- C) 162,000; linear
- D) 162,000; exponential

Explanation: 162,000; exponential

240 ÷ 60 = 4

The population will triple four times.

2000 x 3⁴ = 162,000

18) If a town with a population of 10,000 doubles every 14 years, what will the population be in 42 years and is it modeled by a linear function or a exponential function?

- A) 30,000; linear function
- B) 30,000; exponential function
- C) 80,000; linear function
- D) 80,000; exponential function

Explanation: 80,000; exponential function

Determine how many times the population will double.

 $\frac{42}{14} = 3$

Multiply the population by 2 a total of 3 times.

 $10,000 \times 2^3 = 80,000$