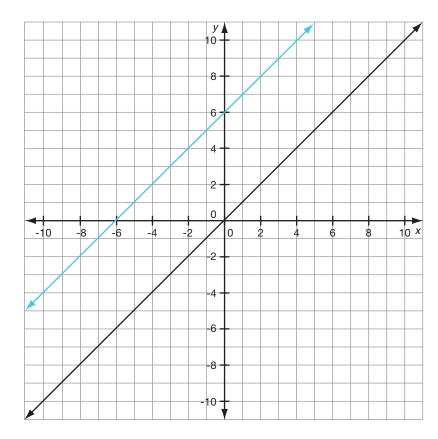
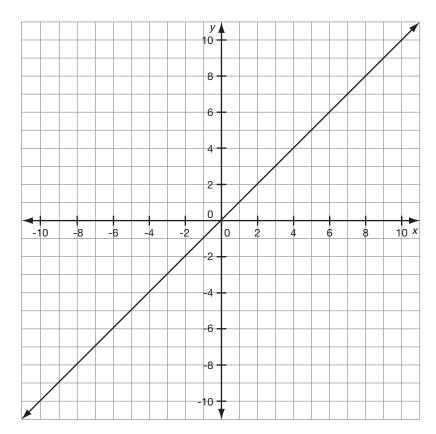
Lesson 18.1 Skills Practice

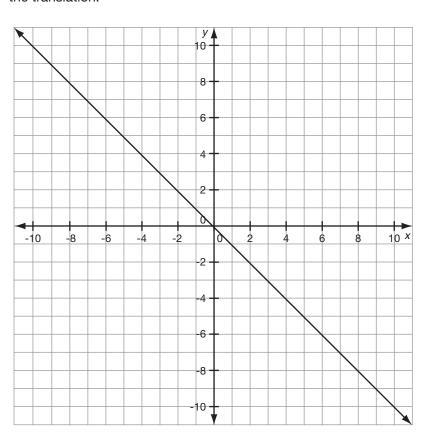

DATE ____ NAME

Sliding Lines Translations of Linear Functions

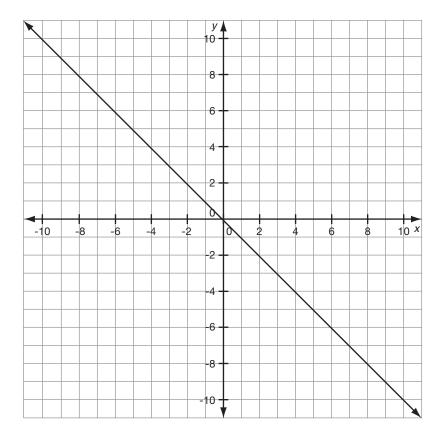
Problem Set


Translate each graph. Graph the translation and write an equation to represent the translation.

1. Translate the graph of y = x up 6 units. Graph the translation and write an equation to represent the translation.

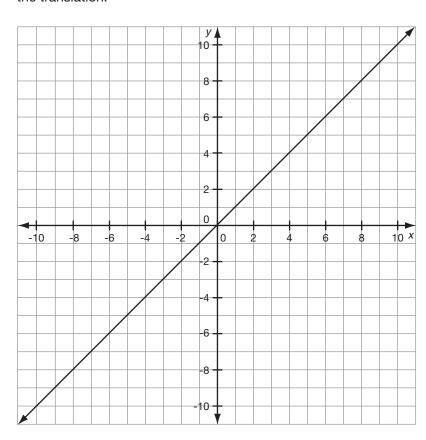

$$y = x + 6$$
 or $x = y - 6$

2. Translate the graph of y = x down 2 units. Graph the translation and write an equation to represent the translation.

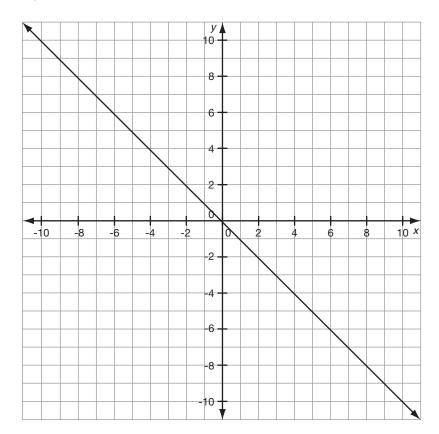


NAME______DATE____

3. Translate the graph of y = -x left 3 units. Graph the translation and write an equation to represent the translation.

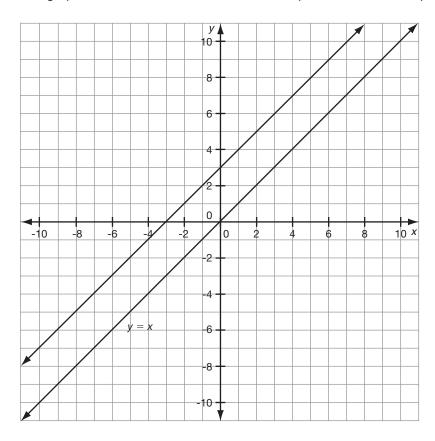


4. Translate the graph of y = -x right 2 units. Graph the translation and write an equation to represent the translation.

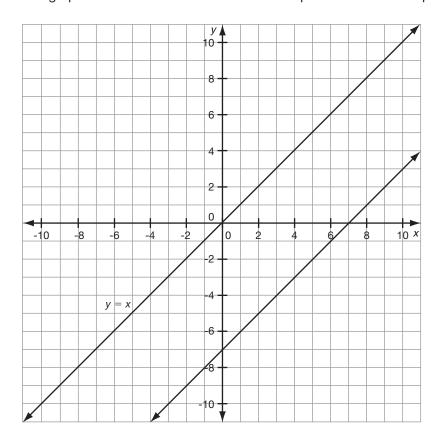


NAME_____DATE____

5. Translate the graph of y = x left 5 units. Graph the translation and write an equation to represent the translation.


6. Translate the graph of y = -x down 8 units. Graph the translation and write an equation to represent the translation.

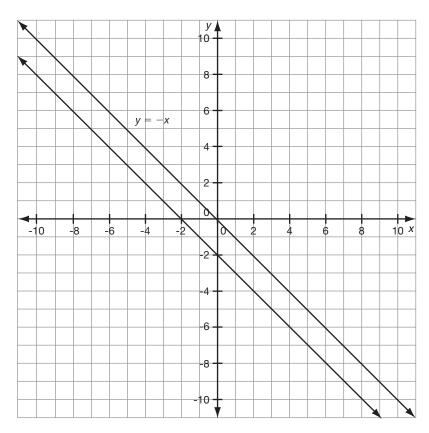
NAME____ DATE____


Describe each translation.

7. The graph shown is the result of a translation performed on the equation y = x.

The translation is either a slide up 3 units or a slide left 3 units.

8. The graph shown is the result of a translation performed on the equation y = x.

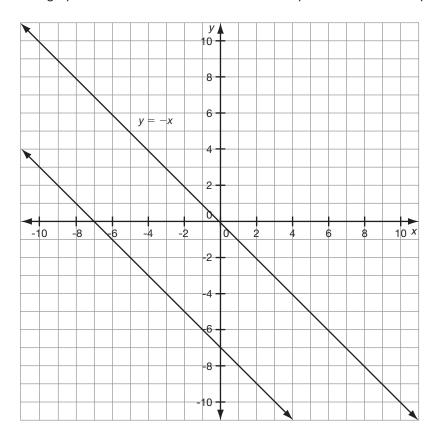


NAME______DATE____

9. The graph shown is the result of a translation performed on the equation y = -x.

y ▲ 10 8 --10 10 X -8 -10 🛨

10. The graph shown is the result of a translation performed on the equation y = -x.



NAME_____DATE____

11. The graph shown is the result of a translation performed on the equation y = x.

12. The graph shown is the result of a translation performed on the equation y = -x.

NAME DATE

Describe each translation.

- **13.** The equation y = x + 4.5 is the result of a translation performed on the equation y = x. The translation is either a slide up 4.5 units or a slide left 4.5 units.
- **14.** The equation y = -x + 2.1 is the result of a translation performed on the equation y = -x.
- **15.** The equation y = x + 6.2 is the result of a translation performed on the equation y = x.
- **16.** The equation y = -x 12 is the result of a translation performed on the equation y = -x.
- **17.** The equation y = x 3.8 is the result of a translation performed on the equation y = x.
- **18.** The equation y = -x 1.5 is the result of a translation performed on the equation y = -x.

© 2012 Carnegie Learning

18

© 2012 Carnegie Learning

Lesson 18.2 Skills Practice

NAME_____DATE____

Parallel or Perpendicular? Slopes of Parallel and Perpendicular Lines

Vocabulary

Define each term in your own words.

- 1. Reciprocal
- 2. Negative reciprocal

Problem Set

Determine the slope of a line parallel to the given line represented by each equation.

1.
$$y = 6x + 12$$

2.
$$y = \frac{2}{3}x - 5$$

The slope of the line is 6, so the slope of a line parallel to it is 6.

3.
$$y = 8 - 5x$$

4.
$$y = 14 - \frac{1}{4}x$$

5.
$$3x + 4y = 24$$

6.
$$15x - 5y = 40$$

Identify the slope of the line represented by each equation to determine which equations represent parallel lines.

7. a.
$$y = 8x - 5$$
 b. $y = 7 - 8x$ **c.** $y = 4 + 8x$

b.
$$y = 7 - 8x$$

c.
$$y = 4 + 8x$$

$$slope = -8$$

$$slope = 8$$

The equations (a) and (c) represent parallel lines.

8 a
$$y = 6 - 3y$$

$$h v = -3v = 8$$

8. a.
$$y = 6 - 3x$$
 b. $y = -3x - 8$ c. $y = 3x + 10$

9. a.
$$5y = -20x - 45$$
 b. $2y = 4x + 6$ **c.** $4y = 32 - 16x$

$$b_{x} 2v = 4x + 6$$

c.
$$4v = 32 - 16x$$

NAME_____ DATE____

10. a.
$$4y = 4x - 16$$
 b. $2y = 8 + 4x$ c. $3y = 6x + 18$

b.
$$2y = 8 + 4x$$

c.
$$3y = 6x + 18$$

11. a.
$$3x + 5y = 60$$

11. a.
$$3x + 5y = 60$$
 b. $6x + 10y = -40$ **c.** $15x + 9y = 18$

c.
$$15x + 9y = 18$$

12. a.
$$-x + 8y = 24$$
 b. $-32x + 4y = 12$ **c.** $-40x + 5y = 10$

b.
$$-32x + 4y = 12$$

c.
$$-40x + 5y = 10$$

Determine the negative reciprocal of each number.

$$-\frac{1}{5}$$

15.
$$\frac{3}{4}$$

16.
$$-\frac{5}{8}$$

17.
$$\frac{1}{7}$$

18.
$$-\frac{2}{5}$$

NAME

DATE ____

Determine the slope of a line perpendicular to the given line represented by each equation.

19.
$$y = 13x + 22$$

20.
$$y = 5x - 17$$

The slope of the line is 13, so the slope of a line perpendicular to it is $-\frac{1}{13}$.

21.
$$y = \frac{1}{6}x + 4$$

22.
$$y = 9 - \frac{1}{3}x$$

23.
$$5x + 6y = 36$$

24.
$$4x - 3y = 21$$

Identify the slope of the line represented by each equation to determine which equations represent perpendicular lines.

25. a.
$$y = \frac{2}{3}x - 8$$

b.
$$y = \frac{3}{2}x - 1$$

b.
$$y = \frac{3}{2}x - 1$$
 c. $y = -\frac{3}{2}x + 14$

slope =
$$\frac{2}{3}$$

slope =
$$\frac{3}{2}$$

$$slope = \frac{3}{2} \qquad slope = -\frac{3}{2}$$

The equations (a) and (c) represent perpendicular lines.

26. a.
$$y = -5x - 23$$

26. a.
$$y = -5x - 23$$
 b. $y = 18 + \frac{1}{5}x$ c. $y = 5x + 31$

c.
$$y = 5x + 3$$

27. a.
$$-6y = -4x + 12$$
 b. $2y = 3x + 8$ c. $-9y = 6x + 9$

b.
$$2y = 3x + 8$$

c.
$$-9v = 6x + 9$$

NAME_____ DATE____

28. a.
$$-5y = 25x + 55$$
 b. $5y = x + 15$ c. $4y = 20x - 24$

b.
$$5v = x + 15$$

c.
$$4y = 20x - 24$$

29. a.
$$-6x + 2y = 20$$

29. a.
$$-6x + 2y = 20$$
 b. $-9x - 3y = -18$ **c.** $x + 3y = 15$

c.
$$x + 3y = 15$$

30. a.
$$3x + 18y = -72$$
 b. $30x + 5y = 25$ c. $-2x + 12y = -24$

b.
$$30x + 5y = 25$$

c.
$$-2x + 12y = -24$$

Determine whether the lines described by the equations are parallel, perpendicular, or neither.

31.
$$y = 5x + 8$$

$$y = 4 + 5x$$

$$slope = 5$$

$$slope = 5$$

The slopes are equal, so the lines are parallel.

32.
$$y = 15 - 2x$$

$$y = \frac{1}{2}x + 17$$

33.
$$y = \frac{1}{3}x + 5$$

$$y = 3x - 2$$

NAME______DATE____

34.
$$3x + 12y = 24$$

$$-20x + 5y = 40$$

35.
$$3x + 2y = 2$$

$$2x + 3y = 3$$

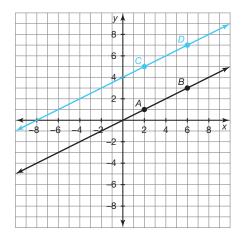
36.
$$10y = 6x + 80$$

$$-12x + 20y = 160$$

NAME______DATE____

Up, Down, and All Around Line Transformations

Vocabulary

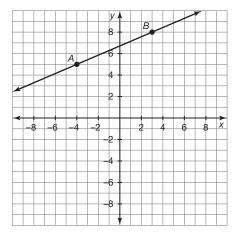

Write a definition for the term in your own words.

1. Triangle Sum Theorem

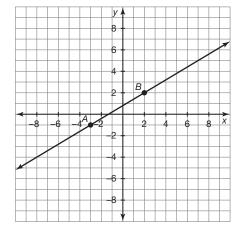
Problem Set

Sketch the translation for each line.

1. Vertically translate line *AB* 4 units to create line *CD*. Calculate the slope of each line to determine if the lines are parallel.



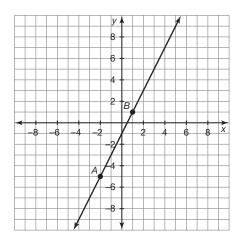
Line AB is parallel to line CD.


line AB:
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

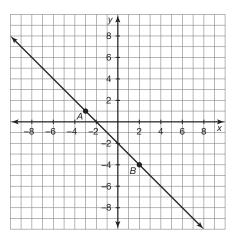
 $= \frac{3 - 1}{6 - 2}$
 $= \frac{2}{4}$
line CD: $m = \frac{y_2 - y_1}{x_2 - x_1}$
 $= \frac{7 - 5}{6 - 2}$

18

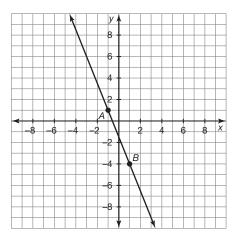
2. Vertically translate line AB-8 units to create line CD. Calculate the slope of each line to determine if the lines are parallel.


3. Horizontally translate line AB-5 units to create line CD. Calculate the slope of each line to determine if the lines are parallel.

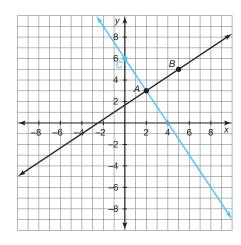
NAME_


DATE _____

4. Horizontally translate line AB 6 units to create line CD. Calculate the slope of each line to


determine if the lines are parallel.

5. Vertically translate line AB 7 units to create line CD. Calculate the slope of each line to determine if the lines are parallel.


18

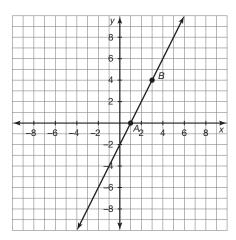
6. Horizontally translate line AB-3 units to create line CD. Calculate the slope of each line to determine if the lines are parallel.

Sketch the rotation for each line.

7. Use point A as the point of rotation and rotate line AB 90° counterclockwise to form line AC. Calculate the slope of each line to determine if the lines are perpendicular. Explain how you determined your answer.

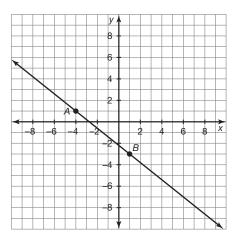
line AB:
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

= $\frac{5 - 3}{5 - 2}$
= $\frac{2}{3}$


line AC:
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

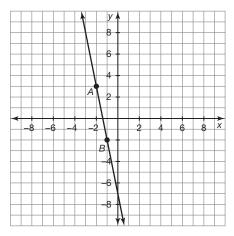
= $\frac{6 - 3}{0 - 2}$
= $-\frac{3}{2}$

Line AB is perpendicular to line AC because the slopes are negative reciprocals of each other.

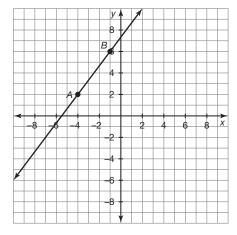

NAME

DATE

8. Use point *B* as the point of rotation and rotate line *AB* 90° clockwise to form line *BC*. Calculate the slope of each line to determine if the lines are perpendicular. Explain how you determined your answer.

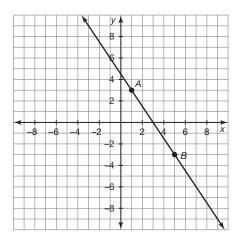


9. Use point A as the point of rotation and rotate line AB 90° counterclockwise to form line AC. Calculate the slope of each line to determine if the lines are perpendicular. Explain how you determined your answer.



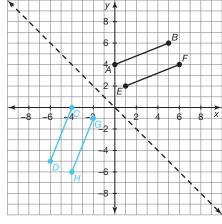
© 2012 Carnegie Learning

10. Use point *B* as the point of rotation and rotate line *AB* 90° clockwise to form line *BC*. Calculate the slope of each line to determine if the lines are perpendicular. Explain how you determined your answer.



- 18
- **11.** Use point *A* as the point of rotation and rotate line *AB* 90° clockwise to form line *AC*. Calculate the slope of each line to determine if the lines are perpendicular. Explain how you determined your answer.

NAME_____ DATE ____


12. Use point *B* as the point of rotation and rotate line *AB* 90° counterclockwise to form line *BC*. Calculate the slope of each line to determine if the lines are perpendicular. Explain how you determined your answer.

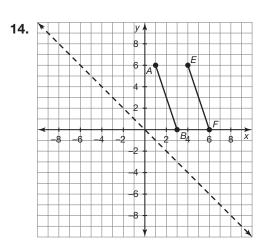
Reflect line segment *AB* over the reflection line to form line segment *CD*. Reflect line segment *EF* over the reflection line to form line segment *GH*. Calculate the slopes of all line segments to prove that the line segments are parallel.

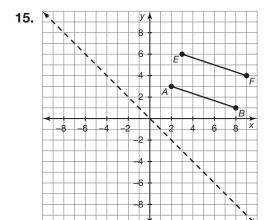
13.

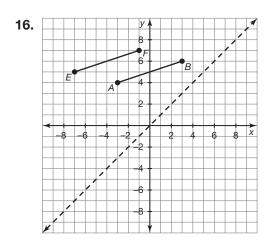
© 2012 Carnegie Learning

slope of
$$\overline{AB} = \frac{2}{5}$$

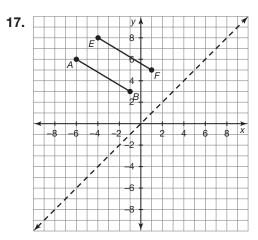
slope of
$$\overline{EF} = \frac{2}{5}$$

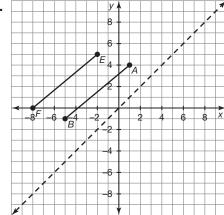

$$\overline{AB} \parallel \overline{EF}$$


slope of
$$\overline{CD} = \frac{5}{2}$$


slope of
$$\overline{GH} = \frac{5}{2}$$

$$\overline{CD} \parallel \overline{GH}$$





DATE____

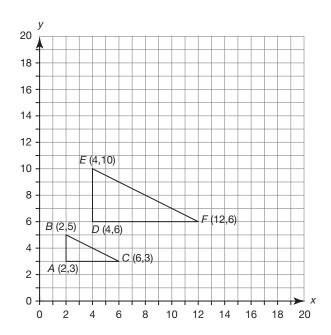
NAME

18.

18

© 2012 Carnegie Learning

Lesson 18.4 Skills Practice


NAME_____ DATE ____

Back on the Grid Similar Triangles on the Coordinate Plane

Problem Set

Verify that the triangles in each are similar.

1. Triangle *DEF* is the image that resulted from a dilation of $\triangle ABC$. Use the SAS Similarity Theorem to determine whether $\triangle ABC$ is similar to $\triangle DEF$.

Corresponding Sides \overline{AB} and \overline{DE} :

$$AB = 2$$

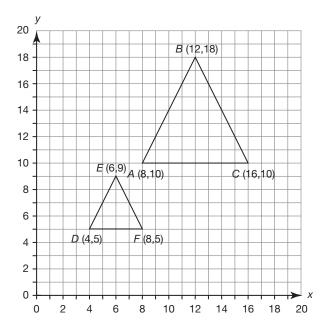
$$DE = 4$$

$$\frac{DE}{AB} = \frac{4}{2}$$

Corresponding Sides \overline{AC} and \overline{DF} :

$$AC = 4$$

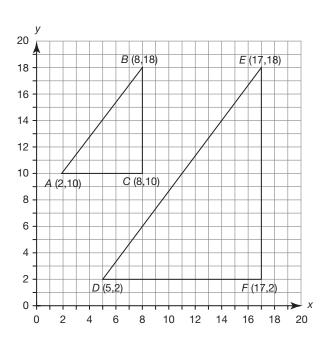
$$DF = 8$$

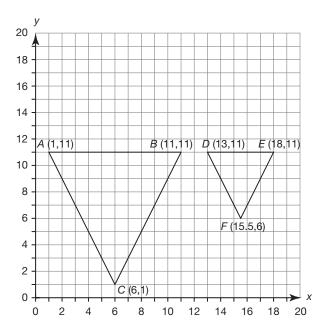

$$\frac{DF}{AC} = \frac{8}{4}$$

$$\frac{DE}{AB} = \frac{DF}{AC} = 2$$

Corresponding Angles $\angle A$ and $\angle D$: Angle A and $\angle D$ are both right angles. The measures of $\angle A$ and $\angle D$ are equal.

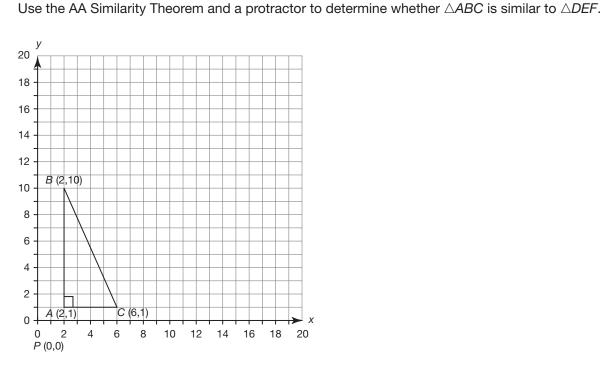
The two triangles are similar by the SAS Similarity Theorem.

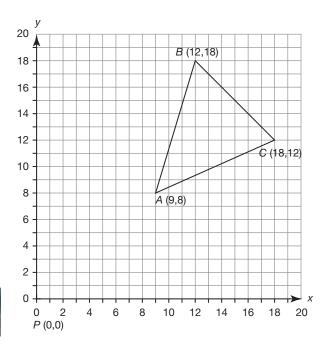

2. Triangle *DEF* is the image that resulted from a dilation of $\triangle ABC$. Use the SAS Similarity Theorem and a protractor to determine whether $\triangle ABC$ is similar to $\triangle DEF$.


MAME

DATE ____

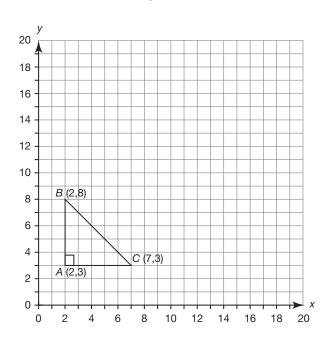
3. Triangle *DEF* is the image that resulted from a dilation of $\triangle ABC$. Use the SSS Similarity Theorem to determine whether $\triangle ABC$ is similar to $\triangle DEF$.

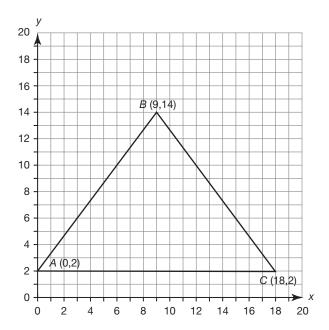

4. Triangle *DEF* is the image that resulted from a dilation of $\triangle ABC$. Use the SSS Similarity Theorem to determine whether $\triangle ABC$ is similar to $\triangle DEF$.


NAME

DATE_

5. Dilate $\triangle ABC$ to form $\triangle DEF$ using point P (0, 0) as the center of dilation and a scale factor of 2.


6. Dilate $\triangle ABC$ to form $\triangle DEF$ using point P (0, 0) as the center of dilation and a scale factor of $\frac{1}{2}$. Use the AA Similarity Theorem and a protractor to determine whether $\triangle ABC$ is similar to $\triangle DEF$.


NAME_

DATE_

7. Dilate $\triangle ABC$ to form $\triangle DEF$ using point A (2, 3) as the center of dilation and a scale factor of 3. Use the SAS Similarity Theorem to determine whether $\triangle ABC$ is similar to $\triangle DEF$.

8. Dilate $\triangle ABC$ to form $\triangle DEF$ using point A (0, 2) as the center of dilation and a scale factor of $\frac{1}{3}$. Use the SAS Similarity Theorem to determine whether $\triangle ABC$ is similar to $\triangle DEF$.

